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1. Introduction 

The Linkwitz-Riley-filter is considered to be one of the best analog crossover filter functions. It has 
many desirable properties, such as constant phase between outputs. Resulting summed transfer function 
is of all-pass-type. It exhibits some phase distortion, but flat amplitude response, assuming that no 
delays are introduced after the filter before the summation point. 
 
In this paper, I’ll derive necessary equations to design Linkwitz-Riley filter or any other combination of 
two identical second-order filter sections by using state-variable filter. State variable filter is nice, if you 
need identical high-pass and low-pass sections simultaneously, because it implements both of them. 
Furthermore, they have identical cut-off-frequencies, so requirement for precision components is 
reduced. 
 
Originally, I saw this type of circuit in Finnish book, called “Rakenna HIFI-laitteita”. It describes this 
type of filter, by using state-variable filter, but leaves reader no clue how the feedback resistor networks 
should be designed to have required Q and K. It only states that “the Q-value is set by designing 
feedback loops appropriately”. Either the author has no idea how it is done, or is unwilling to reveal the 
information. This paper should fill the gap. Furthermore, I can’t stand circuits which I have no clue how 
the design is made. 
 
My derivation follows guidelines given in [1]. Although actual circuit here is a bit different, analysis is 
still basically the same. There are some mathematics involved here, but that is a bit unavoidable during 
analysis of circuits like this. 

2. Fourth-order Linkwitz-Riley (LR4) transfer function 

Generalized second order high-pass transfer function is defined to be 
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 where Q is the quality factor, i.e. absolute gain at natural angular frequency ω0 and K is gain at high 
frequencies, ω>>ω0. 
 
Generally, the fourth order transfer function is 
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Multiplying these two parts together we get for transfer function 
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LR4 transfer function can be formed by composing identical two second order butterworth filters, which 

have Q of 
2

1
, same natural frequency and usually some desired gain, so we make following 

assignments: 
 

00201 ωωω ==  
 

QQQ == 21  
 

KKK == 21  
 
With these simplifications, the transfer function (x) is reduced to 
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and further to 
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3. Transfer function of state-variable architecture 

To fit the LR4 transfer function, we use basic definition of transfer function: 
 
 

( ) ( )
( ) ( ) 4

0

3
0

2

22
02034

42

in

hp
4

2212U

U

ω
ωωω

+







+







 +
+








+

==

Q
s

Q
Q

s
Q

ss

sK
s

s
sH HP   (6) 

 
To obtain desired form, we’ll cross-multiply eq. (7), and divide both sides by s4: 
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Preceding equation somewhat gives us a hint, how state-variable filter is formed: 
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First, we form high-pass filtered signal, and applying successively integrators, we get to lowpass 
function after fourth integrator. Problem is, however, how we obtain the high-pass filtered signal in the 
first place. By arranging the equation as 
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We see, that Uhp(s) is obtainable by using weighted summer circuit from intermediate outputs. Also, 
with this arrangement, connection to integrator implementation is particularly strong. 
 
Realization of this transfer function is shown in figure 1 below: 
 

 
 
Figure 1. Schematics of fourth order state-variable filter realization. 
 
This circuit is most conveniently analyzed with superposition. That means that we consider only one 
source per time, and rest are thought to be zero with zero output impedance. 
 
With component references in figure x, we get following expression for voltage UHP(s) at output of the 
summer: 
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Each integrator’s time constant is RFCF, which is chosen to be  
 

00 2
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f
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==       (10) 

 

4. Circuit synthesis 

 
We just derived expression for UHP. Now we just equate equations (x) and (y), and get following 
equations: 
 

UHP(s) 
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In order to simplify these requirements, we can make following conclusions from previous equations: 

Resistor ratio 
4R

RU  equals one, so we can combine it with ratio 
3R

RU  so that 
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us still four unknown ratios and three equations to work with, so we can select one ratio arbitarily. In 
previously mentioned source, R1 and R2 are equally valued, so we can make same selection. I’ll mark 
R1=R2=R12. Previous set of equations is reduced to 
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By making following substitutions to simplify rest of the derivation of synthesis eqs: 
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we can denote above eqs as  
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By combining first two eqs, we can solve resistor ratios A, B and C: 
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5. Examples 

Example 1: 
 
As an example, let’s design LR4 filter, what has following specifications: fc=3.5 kHz and K2=2 (6.02 
dB). 
 
First we compute constant A: 
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Then C: 
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And finally B: 
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Now when we revert back to original values, we can calculate resistor values: 
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Choosing RI as 10 kΩ, we get R1 and R2 : 
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Then, by choosing for R4 and RU also as 10 kΩ, we get RD: 
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CF is chosen to be 10 nF, and RF calculated: 
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Finalized circuit schematics looks like this: 
 

 
 
Figure 2. Completed LR4 filter realization schematics with (Q=0.707, K2=2, fc=3.5 kHz). 
 
Below is a output from simulation using previously calculated resistor values with PSPICE: 

 
Figure 3. Simulated frequency response of filter in fig.2. 
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Example 2: 
 
Now, design again a LR4 Filter, which has total gain K2 as 1, and cut-off frequency fc of 50 Hz (same 
case as in [2]): 
 
First we compute constant A: 
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Then C: 
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And finally B: 
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Now when we revert back to original values, we can calculate resistor values: 
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Choosing RI as 10 kΩ, we get R1 and R2 : 
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Then, by choosing for R4 and RU also as 10 kΩ, we get RD: 
 
 

kO22,15
6569,0
kO10

≈==
B

R
R U

D      (28) 

 
and R3: 
 

kO5,2
4
kO104

3 ≈==
C
R

R       (29) 

 
CF is chosen to be 100 nF, and RF calculated: 
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Again simulation agrees well: 

 



The analysis of fourth-order state variable filter and it’s application to Linkwitz-Riley filters 
 
Linearteam technical paper  Janne Ahonen Page 12 of 12 
 

6. Realization accuracy 

State-variable architecture is somewhat sensitive to opamp finite gain-bandwith-product. Here is plot of 
summed frequency response from high and lowpass outputs. Simulation was here on example 2, because 
it lets you compare with resistor values given in [2]. Ideally, it should be completely flat. Using resistor 
values from [2], there is some more deviation to response: 

 
Upper summed frequency response shows 0.08 dB deviation from ideal behaviour using otherwise 
identical parts. Below it, is a trace using calculated ideal component values.  
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