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1 INTRODUCTION 

Equalization on subwoofers is commonly very little covered subject. This document is written to 
enlighten some aspects of this area of box design. During the development of mathematical models 
for WinISD, I had gained some knowledge about how to systematically add zeros/poles to system in 
order to achieve desired response. This document contains some ”advanced” mathematics (well, not 
very advanced, but to get maximum benefit from this you should be at least familiar with complex 
numbers. It is also useful to understand the concept behind so called transfer functions.). I have also 
found out that local audio magazine, ”HIFI-lehti” seems to be unwilling to disclose any detailed 
information on subject (at least that way, that it could be used to do more research on the subject). 
There are two things which annoy me very much: 

1) Equations are given ”pre-adjusted” in specific situation, so there is no possibility to further 
fiddle with it, and, 

2) Equations are scaled so that variables aren’t given as SI-baseunits, as they should. 

I’ll promise I won’t do that. 

Warning! If you think that it is difficult to do conversion between metric system and imperial units, 
then please don’t bother to read this document :) I have as much as possible given much thought to 
make this as ”JAES-quality” text, so it might not be suitable for beginners. 

Please feel free to send any corrections, additions, feedback, suggestions about this document. 

Contact info: 

Janne Ahonen 
Aittolammentie 3 as 7 
70780 Kuopio 
Finland 

e-mail: janne@linearteam.org. 
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2 BASIC THINGS 

I’ll briefly explain basics for some concepts behind equalizer design.  

2.1 Transfer functions 

Transfer functions are based upon integral conversion called ’Laplace-transform’. Basically, it 
transforms time domain function to ’s-domain’, where time is no longer a variable.  

Fortunately, it is not usually necessary to perform actual Laplace transform to find the transfer 
function for the circuit. Instead, it is usually done by applying the known voltage divider formula in 
AC-domain. 

Variable in s-domain is s (surprise!), which is defined as σω += js . Where 1−=j or imaginary 
unit. The variable ω is the angular frequency which is related to normal frequency by 

fπω 2=       (2.1) 

Transfer functions are commonly rational functions, where denominator and numerator are 
polynomials of s. Roots of denominator polynomial are called as ’poles’ and roots of numerator 
polynomial are called as ’zeros’, respectively.  This paper deals exclusively with second order 
transfer functions, because closed box speaker can be interpreted as acoustic second order highpass 
filter, which has Q and natural angular frequency nω . 

Second order lowpass transfer function has following form: 
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where ωn is natural frequency of the system in radians/sec, ξ is the damping factor and K is the 
gain. Q is related to ξ by relation  

ξ2
1

=Q       (2.6) 

Then, we can write (2.2) as 
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Equation (2.2) can be transformed into high-pass form by using LPàHP frequency transformation. 
For that, we must assume that nω  equals one. The most commonly used frequency transformations 
are : 

Lowpass to lowpass (LPàLP): 
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Lowpass to highpass (LPàHP): 
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Lowpass to bandpass (LPàBP): 
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Lowpass to band-reject (LPàBR): 
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Now, let’s apply LPàHP frequency transformation to (2.2) 
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and then 
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Or, by using damping factor ξ, 
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Denoting the lowpass transfer function denominator coefficients a2…a0 we can express second 
order transfer function as 

( )
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Coefficients a2…a0 can then be interpreted as follows: 















=

=

=

K
a

K
a

K
a

n

n

1

2

1

0

1

22

ω
ξ
ω

      (2.17) 

Solving these for K, ωn, and ξ, we obtain following: 
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So for Q, we get 
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2.2 Types of second order transfer functions 

There are basically three types of second order transfer functions: 

• Overdamped Q<0.5 

• Critically damped Q=0.5 

• Underdamped, Q>0.5 

Above types differ only by types of roots of denominator. Overdamped systems have all roots on 
real axis. If we solve poles for transfer function H(s), then second order transfer function for 
overdamped system can be expressed as follows: 
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where p1 and p2 are the poles. 

Because this document involves with closed box, which is a second-order system, following 
relation is therefore useful: 

For system, that has Q ≤ 0,5 poles p1 and p2 are as follows: 
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Note that closed box has double zeros at origin, but response is set by poles (zeros ignored). 

Where 
1

1
1
p−

=τ  and 
2

2
1
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=τ . This notation is corresponding to RC-circuit, where time constant 

is expressed as .RC=τ  When dealing with real poles it is convenient to think these as two series 
connected independent RC-circuits, where time constants are determined from poles. 

Here, coefficients for (2.9) are: 
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By using (2.5) and (2.7) we get expressions for Qtc and fsc (gain K is normally set to 1): 
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When designing single-pole compensators, it is useful to solve fp1 and fp2 from Qtc and fsc. Using 
(2.23) we obtain 













−+
=

−+
=

−−
=

−−
=

tc

tc
sc

tc

tcscscsc
p

tc

tc
sc

tc

tcscscsc
p

Q
Q

f
Q

Qfff
f

Q
Q

f
Q

Qfff
f

2
411

2
4

2
411

2
4

2222

2

2222

1

 

 



Closed box equalization  8(40) 

It is also useful to derive an magnitude function of single real pole of high-pass function: 
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Multiplying this with complex conjugate of the transfer function, we get 
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So magnitude function of single pole is therefore 
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Critically damped system is special case of underdamped systems. It has both poles on same 
location on real axis. Underdamped system has complex conjugate pole pair. Complex poles of real 
system occur always as complex conjugate pair, because otherwise system would have to be 
complex. Generalized second order high pass magnitude function is 
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By substituting  
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to (2.15) we get 
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which can be even further simplified. 
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2.3 The s-plane 
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Figure 1.  Example of the s-plane. 

Circles represent points, where pole has constant natural frequency. When pole travels along this 
line, its so called damping factor is changed from 1 (pole at real axis) to 0 (pole at imaginary axis). 

Formally, the damping factor is defined to be  

( )ψξ cos=       (2.14) 

where ψ is the angle between real axis and the pole, and the natural frequency of the pole in 
radians/sec is defined to be  

sn =ω       (2.15) 

Lines originating from the origin represent points, where pole has constant damping factor and its 
natural frequency changes.  

Interesting fact is that Q-factor tells what is the gain at the natural frequency of second-order 
system. 

Preceding statement is illustrated in following figures: 

A second-order high-pass transfer function’s magnitude, whose natural frequency was set to 20 Hz 
and Qtc varied from 0.3 to 2.0 is plotted below: 
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Figure 2.  Amplitude response of various transfer functions with different Q-values. 

From Figure 2. it is really evident that Q really is the gain at natural frequency. Transfer function 
with Qtc=1.0, the response crosses exactly 0 dB at 20 Hz. Let’s see pole-zero map for same transfer 
functions: 

 

-400 -350 -300 -250 -200 -150 -100 -50 0
-150

-100

-50

0

50

100

150

Real Axis

Im
ag

 A
xi

s

Pole-Zero map for different Q's

 

Figure 3.  Pole-zero map for previous transfer functions 
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When Qtc=0,3 the poles are located at real axis. With Qtc=0,5, the poles are merged to ”one” pole 
(both poles at same location). With Qtc=0,707, the poles are complex, and their angle between real 
axis and the poles is 45°.  As Qtc continues to increase, the poles move along constant ωn circle 
towards the imaginary axis. 

2.4 Determining transfer functions from passive networks 

When determining component impedances in s-domain σ is set to zero. So we actually get 
following impedances in s-domain: 

Table 1. Component impedances in s-domain 

Component Impedance in s-domain 
Resistor R 
Capacitor sC1  
Inductor sL 

 

By substituting impedances with previous expressions, it yields to desired transfer function.  
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3 EQUALIZER TYPES 

When choosing a particular equalizer, there are some points that are mainly interesting when 
deciding what type to use. I would like to reveal some properties of typical equalizer circuits. 
Drawback of every equalizer is that it requires more powerful amplifier and of course, more 
excursion capable driver. 

3.1 Low-Q equalizer 

 

 

Figure 4.  Schematic of modified Linkwitz-equalizer. 

3.1.1 Circuit analysis 

Circuit is very similar to inverting op-amp circuit, so it can be analyzed by reducing impedances to 
following basic form: 

 

 

Figure 5.  Generalization of inverting opamp circuit impedances. 

In figure 5, the transfer function has the following form: 
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By comparing figures 4 and 5 we can obtain following values for Zf and Zi ( )ωjs = : 

1RZi =       (3.2) 
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By substituting eqs (3.2) and (3.3) to (3.1) we obtain the transfer function of the equalizer: 
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During further analysis/synthesis, I’ll ignore the minus in front of transfer function, because it only 
means that circuit inverts phase by 180°. That can be easily arranged in real life by adding an 
inverting buffer in front of the equalizer. 

From the transfer function (3.4), it can be seen that circuit has one real zero and one real pole. 

Natural frequency of zero is  
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Correspondingly, the natural frequency of the pole is 
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It can be seen from (3.6) that fp<fz for all circuit component values. Therefore, this circuit can’t be 
used to increase natural frequencies of the pole, but it does not make sense anyway. 

From (3.4) we can derive the gain that circuit approaches asymptotically, when frequency increases 
towards infinity. 
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By denoting 
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The magnitude of transfer function (3.4) is 
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Generally, this equalizer has very gentle slopes, therefore delay distortion on signal is minimized. 
Following graph shows this property: 
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Figure 6.  Bode plot of equalizer transfer function. 

Because slope of the phase is positive for frequencies greater than about 15 Hz, circuit has negative 
group delay with those frequencies. Group velocity is therefore superluminal, i.e. greater than c, the 
speed of light in vacuum (this does not contradict theory of relativity): 
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Figure 7.  Group delay of equalizer example. 

3.1.2 Circuit synthesis 

First, determine the poles of existing system. Qtc must be less or equal than 0,5. Determine, if only 
one or both poles require compensation. As an rule of thumb, a real pole attenuates 6 dB at it’s 
natural frequency. You can calculate attenuation of single pole by using (2.13). Part references refer 
to figure 4. 

To compensate pole use the following procedure: 

1) Choose C1. 

A good guess for this capacitor is 100 nF. If resistors become too large (R>>100k), then change 
capacitor and try again. 

2) Calculate R2 to set natural frequency of the zero introduced by the equalizer. 

This frequency should be the same than natural frequency of the pole to be compensated. By 
solving (3.5) for R2 we get 
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2 2
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3) Calculate R3 to set natural frequency of the pole introduced by the equalizer. 

This is natural frequency of new pole. Note that it should be lower than frequency of the zero. 
Again, solving (3.6) for R3 gives 
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4) Set the desired high frequency gain by setting R1. 

This can be specified freely, although common practice is to set it to 1 (0 dB gain). Solving (3.7) for 
R1 gives: 

( )( )32
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For more practical design flow, see the example in chapter 4.1. 

3.2 High-Q equalizer (”The Linkwitz transform”) 

When total system has Qtc>0,5 then system has complex poles, and we can’t use preceding circuit. 
Fortunately, Linkwitz has designed another form of equalizer [2], which creates one pair of 
complex zeros and poles. Basically, it compensates poles of the closed box with zeros, and then 
creates new pair of poles, which are spec’ed by the designer. 

Schematic of this equalizer is presented below: 

R2 C2

Ii2

Ii1

Ifb1

Ifb2

Ii

Ifb

R2 C2

R3

R1 R1

R3

C3

C1Uin
Uout

 

 

Figure 8.  "The Linkwitz Transform", Biquad–type equalizer 

3.2.1 Circuit analysis 

To derive the transfer function for this type of equalizer, we can use preceding simplification to 
generalized impedance in feedback loop. This circuit is a bit more difficult, because it has voltage 
dividers in feedback, so this divider has to be considered separately.  

Circuit notation is same that Linkwitz used. 

Current Ii1 is a bit tricky, because it includes filter. 
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Let’s define a temporary variable, Uc(s), for voltage across capacitor C1. For this voltage we get a 
following expression, by using the voltage divider equation: 
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Now, the current Ii1 is simply 
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For input current Ii2, we get following expressions: 
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Combining these currents gives us the total input current Ii: 
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Because feedback network is similar, we obtain for Ifb using same techniques 
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Now, because we can assume that inverting input of the opamp doesn’t take any current from that 
node, we can combine (3.11) and (3.12) by using Kirchoff’s current law: 

( ) ( ) 0=+ sIsI fbi      (3.13) 

Substituting (3.11) and (3.12) into (3.13) yields to 

( ) ( )
( )

( ) ( )
( ) 0

2RsRR2CRCsRRCC
12

2RsRR2CRCsRRCC
12

3232
2

3
2

2
2

323

2232
22

332

1212
2

1
2

2
2

121

2212
22

121

3

1

=
+++

+++

+
+++

+++

sRCRCsRCC
sU

sRCRCsRCC
sU

out

in

  (3.14) 
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Solving transfer function from (3.14) gives 

( ) ( )
( )

( )( )
( )( )12

12
2
2

2232
22

332

2212
22

121

11

33

1

3

+++
+++

+
+

−=
sRCRCsRCC
sRCRCsRCC

sRC
sRC

R
R

sH   (3.15) 

From (3.15) it is seen, that circuit has one real pole and zero, and one second order pole and zero, 
which could be complex or real. When designing this type of equalizer, it is important that natural 
frequencies of the real pole and zero are the same, because otherwise they introduce some warping 
to frequency response. 

Real zero is therefore 

33
33

2
02

1 RC
ssRC z −=⇔=+     (3.16) 

and real pole is 

11
11

2
02

1 RC
ssRC p −=⇔=+     (3.17) 

For the second order factors, we can use (2.4) and (2.6) to determine f0, Q0, fp and Qp. 

Natural frequency of real zero by using (2.15) is 

33

331 1
2

2

21 RC
RCs

f z
z πππ

===      (3.18) 

and natural frequency of real pole is 

11

111 1
2

2

21 RC
RCs

f p
p πππ

===      (3.19) 

for second order zero, the coefficients a0…a2 are: 









=

+=
=

2
1212

22121

0

2
1

RCCa

RCRCa
a

     (3.20) 

By using (2.4) and (2.6) we get f0 and Q0 from second order factor of numerator of (3.15): 

211

2
1212

0

0
0 2

1
2

1

22 CCR
RCCa

a

f
ππππ

ω
====    (3.21) 
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2

1

21

1
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21

21

1

2212

2
121

1

20
0 222

1
C
C

RR
R

C
CC

RR
R

RCRC
RCC

a
aa

Q
+

=⋅
+

=
+

⋅
==   (3.22) 

Similarly, fp and Qp is determined from second order factor in denominator of (3.15): 









=

+=
=

2
3322

22321

0

2
1

RCCa

RCRCa
a

     (3.23) 

323

2
3322

0

2
1

2

1

22 CCR
RCCa

a

f p
p ππππ

ω
====    (3.24) 

2

3

23

3

2

32

23

3

2232

2
332

1

20

222
1

C
C

RR
R

C
CC

RR
R

RCRC
RCC

a
aa

Qp +
=⋅

+
=

+
⋅

==   (3.25) 

This equalizer does not make delay distortion worse. Bode plot of transfer function is shown below. 
F0 is 70 Hz, Q0 is 0.9, fp is 18 Hz and Qp 0.707: 
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Figure 9.  Transfer function bode plot for Linkwitz transform equalizer. 

 

This equalizer also exhibits a negative group delay behaviour: 
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Figure 10.  Group delay behaviour of linkwitz transform equalizer. 

3.2.2 Circuit synthesis 

The design procedure to this equalizer is presented by Linkwitz [1]. I’ll include it here for 
completeness. 

1) Specify f0,Q0, fp and Qp. 

f0 and Q0 is determined from closed box design. They spec the exact compensation for existing 
poles. These values are often given from any decent speaker simulation software, WinISD for 
example, there Qtc is the value from Q0 and fc is the value for f0, respectively. 

Specify reasonable valued for Qp and fp. 

2) Calculate constant ’k’ 

It is required that k is positive, for a realizable equalization using this circuit topology. 

0

0

00

f
f

Q
Q

Q
Q

f
f

k
p

p

pp

−

−
=       (3.26) 

3) Choose C2. 

4) Calculate R1. 

( )( )kQCf
R

+
=

122
1

020
1 π

     (3.27) 



Closed box equalization  21(40) 

5) Calculate R2. 

12 2kRR =       (3.28) 

6) Calculate C1. 

( )( )2
021 12 kQCC +=      (3.29) 

7) Calculate C3. 

2

0
13 








=

f

f
CC p      (3.30) 

8) Calculate R3. 

2

0
13 










=

pf
f

RR      (3.31) 

If the resistors become too large, i.e. >>100k, then change the capacitor value and try again. 

3.3 ”High-Qp” second order high-pass filter equalizer 

This type of equalizer is often used for ported boxes, because it also works as subsonic filter. It has 
some undesirable features which I’ll explain in following chapter. For finnish readers, this type of 
equalizer is used in HIFI 100/1 active subwoofer crossover [3].  
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Figure 11.  Schematic of high-pass filter equalizer 
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3.3.1 Circuit analysis 

By using part references in figure 7, the transfer function is ([2] p.9): 

( ) ( )( ) 11211222
2

2121

2
2121

+−+++
=

sKCRCRCRsCCRR
sCCRR

KsH   (3.32) 

with  

3

43

R
RR

K
+

=       (3.33) 

Denominator coefficients are therefore 









=
−++=

=

21212

2112221

0

)1(

1

CCRRa
KCRCRCRa

a

    (3.34) 

By using (2.4) and (2.6) we get fn and Q: 

2121

21212

0

2
1

2

1

22 CCRR
CCRRa

a

f n
n ππππ

ω
====    (3.35) 

( ) ( )KCRCRCR
CCRR

KCRCRCR
CCRR

a
aa

Q
−++

=
−++

⋅
==

11
1

211222

2121

211222

2121

1

20  (3.36) 

In HIFI 100/1 crossover equalizer [3], stage that performs actual response correction has variable 
gain, and C1=C, C2=C, R1=R, R2=R. With these substitutions, (3.35) and (3.36) can be simplified as 
follows: 

RCRRCC
fn ππ 2

1
2

1 ==      (3.37) 

( ) ( ) KKRC
RC

KRCRC
RC

KRCRCRC
RRCC

Q
−

=
−

=
−

=
−++

=
3

1
331

  (3.38) 

Let’s analyze its time domain properties via step and tone burst responses. As it was designed and 
published in 1988, it has following values for R and C: 

R=9,1 kΩ; C=1 µF. 

With these values, natural frequency for that equalizer is set to 

Hz
RC

fn 5,17
µF1kO1,92

1
2

1 =
⋅⋅

==
ππ

    (3.39) 
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The gain is arranged to be variable so that, R3 is fixed to 3,9 kΩ. R4 is 560 + 10k potentiometer and 
15 k fixed resistor in parallel. Therefore, R4 can be varied from 560 to 

Ω=Ω+Ω=

Ω
+

Ω

+Ω= k56,6k6560

k15
1

k10
1

1
560max4R   (3.40) 

Gain is therefore variable between 

1436,1
k9,3

560k9,3

3

min43
min =

Ω
Ω+Ω

=
+

=
R
RR

K    (3.41) 

and 

6821,2
k9,3

k560,6k9,3

3

max43
max =

Ω
Ω+Ω

=
+

=
R
RR

K    (3.42) 

And Q is variable from 

5387,0
1436,13
1

3
1

min
min =

−
=

−
=

K
Q     (3.43) 

to 

1456,3
6821,23

1
3

1

max
max =

−
=

−
=

K
Q     (3.44) 

It has also another second order highpass filter. In this stage, R3 is also 3,9 kΩ and R4 is 4,7 kΩ. So 
gain is 

2,2051
k9,3

k7,4k9,3

3

43 =
Ω

Ω+Ω
=

+
=

R
RR

K     (3.45) 

so Q is 

1,2581
2,20513
1

3
1

=
−

=
−

=
K

Q     (3.46) 

Frequency response for these two cases (Q in min and max) is presented in figure 12. Please note 
that this graph includes only the equalizer and high pass filter stage responses, so actual response is 
a bit different. 
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Figure 12.  Frequency response of HIFI 100/1 crossover equalizer. 

Because original design ported box was tuned to 25 Hz, this design overloads driver easily, because 
it’s maximum gain is some 17 Hz. 
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Figure 13.  Unit step response of HIFI 100/1 crossover equalizer. 
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From figure 13, it is evident why this type of equalizer is not particulary good in terms of transient 
response. Group delay graph supports this: 
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Figure 14.  Group delay of HIFI 100/1 crossover equalizer. 

For burst testing, I used five-cycle cosine shaped tone burst signal. Frequency of underlying sine 
signal is 20 Hz.  
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Figure 15.  Tone burst response of high-pass filter equalizer. 

It is clear that this type of equalizer has quite high amount of ringing. 
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3.3.2 Circuit synthesis 

When designing such an equalizer, one should first decide how circuit should be configured. 
Basically there are two commonly used options ([2] mentions 2 more): 

1) Set  filter components as equal, as in previous example of HIFI 100/1. 

With this option, gain of the opamp is normally set to 1, so in high frequencies circuit presents no 
change to signal. Now, choose C and fn and calculate R from 

Cf
R

nπ2
1

=       (3.42) 

Choose equalizer Q and calculate required gain with 

Q
K

1
3 −=       (3.43) 

Then choose either resistor (R3 or R4) and calculate another from 

( )1
1 34

4
3 −=⇔

−
= KRR

K
R

R     (3.44) 

2) Set Resistors as ratios and capacitors equal. 

 

3.4 Integrator equalizer (ELF) 

A closed box loudspeaker is well below its resonance, a dual differentiator. The differentiator’s 
transfer function is: 

( ) ssH =       (3.45) 

This single s produces zero at the origin of the s-plane. So there are double zero at origin of any 
closed box speaker. This determines the rising slope of any loudspeaker response. 

The idea behind ELF is that, when two zeros at the origin are eliminated by adding double 
integrator to the system, then the design is converted to equivalent low-pass filter. Schematics for 
ELF double integrator is shown in figure 16. 
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Figure 16.  ELF double integrator schematics. 

Transfer function for single integrator is 

( )
s

sH
1=       (3.46) 

Integrator therefore introduces a pole in origin, which cancels zero. Circuit in figure approximates 
square of (3.45). With what differences, we’ll soon find out.  Interesting property of (3.46) is that 
circuit introduces no delay distortion on signal passing by. This is because phase shift is constant 

(group delay is defined as ( )
ω
φ

ω
d
d

−=gd , remember?). 

3.4.1 Circuit analysis 

To derive the transfer function for ELF, we can (again) use impedance generalization described in 
figure 5. Impedances for (3.1) therefore are (per opamp section): 










=

+
=

1

1
2

1
1

RZ

sC
R

Z

i

f

     (3.47) 

So transfer function is (per section): 

( )
1

1
1

1
1

1

121

2

1

2
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1
2

+
⋅−=

+

−=
+

−=−=
sCRR

R
R
R

CsR

R

sC
R

Z
Z

sH
i

f   (3.48) 

By substituting R2C1 as τ, then we get 

( )
nsR

R

sR
R

sR
R

sH
ω

τ
τ +

⋅−=
+

⋅−=
+

⋅−= 1
1

1
1

1

1

2

1

2

1

2    (3.49) 

where ωn is defined as 

12

1
CRn =ω       (3.50) 

Now, it can be seen that when natural frequency ωn is close to zero, (3.48) is a good approximation 
to (3.46).  
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3.4.2 Circuit synthesis 

3.5 Low-pass filtering equalizer 

Low pass filter resembles somewhat to ELF equalizer. Idea is to put corner frequency low enough, 
so it practically is almost like an integrator. 

3.5.1 Circuit analysis 

 

 

 

3.5.2 Circuit synthesis 



Closed box equalization  29(40) 

4 SOME EXAMPLES 

4.1 Equalization of the low-Q (Qtc ≤0.5) design 

I have chosen Peerless XLS-10 (830457) driver for this example, mainly because I think it serves 
also as building instructions for such an equalizer. I have not seen very many closed box designs 
with this driver, that is probably because it gives need to equalize it and because it is not very 
commonly practised art, designs won’t simply exist. Albeit from this difficulty, closed box gives 
you smallest time domain distortion on waveform (best transient response, to put it more simply). I 
have included Thiele-Small parameters for the XLS-10 driver for convenience in table 2. 

Table 2. Parameters for Peerless XLS-10 driver 

Parameter Value 
Qes 0,18 
Qms 2,63 
Qts 0,17 
Vas 89,7 l 
Fs 18,9 Hz 
Bl  17,5 Tm 
Sd 352 cm2 
Re 3.4 Ω 
Le 4.3 mH 
Xmax 12.5 mm 
Pe 350 W 

 

For the box volume, I chose 35 litres, because it is not so small, that is difficult to construct and it is 
also quite small for even small rooms. 
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Figure 17.  Free-field frequency response without any equalization. 

The system has a transfer function (see my another paper about how to derive this): 

( )
 108.796s101.234 s101.751

s101.751
sH 7-8-211-

2-11

⋅+⋅+⋅
⋅=    (4.1) 

so transfer function coefficients for (2.2) are: 


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


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     (4.2) 

Solving denominator polynomial roots by using standard quadratic equation solving formula gives 
us the system poles: 
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


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(4.3) 

Pole-zero map is shown in Figure 18.  

 

Figure 18.  Pole-zero map of the unequalized design. 

Solving Qtc and fsc using (2.4) and (2.6) gives  

Hz67,35

2.624
1

47.80
1

2

1
=

⋅
=

π
scf     (4.4) 

318,0

2.624
1

47.80
1

2.624
1

47.80
1

=
+

⋅
=tcQ     (4.5) 

Natural frequencies for these poles are modulus of each pole: 
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Hz 99.352.6242.624

Hz 12.8047.8047.80

22
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==−==

==−==

s
rad

p

s
rad

p

p

p

ω

ω
   (4.6) 

Note that frequencies mentioned below are slightly different because higher accuracy coefficients 
(pole natural frequencies calculated directly with Matlab). 

Because only p2 has unconfortably high natural frequency, let’s add compensation for that. We’ll 
chose frequency near p1’s natural frequency.  

To find required frequency,  let’s equalize this design so that it’s -3 dB frequency is 20 Hz. To find 
attenuation of lower frequency pole at 20 Hz, let’s calculate its magnitude at 20 Hz by using (2.13): 

( ) ( )
( )

( ) ( )
8421,0

20247.80

202
47.80 22

2

202
1

=
+−

=
−−

=
= π

π

πjs
p s

s
sH   (4.7) 

So, because –3 dB attenuation is about 0,707, we can allow additional attenuation of 0,84066 for 
second pole. 

Solving (2.13) for p, we get 

( )
( )

( )
=

−
−=

−
−=

84066,0
84066,012021 2

1

1

2

πω

sH

sH
p

p

p
-80,95  (4.8) 

Natural frequency for required new pole is  

( )
Hz88,12

2
95,80

2
=

−−
=

−
=

ππ
p

f pd     (4.9) 

To cancel a pole, we must locate a zero to just a top of a zero. Pole p2 has highest natural frequency, 
so it is desirable to compensate that.  

Let’s take a look into group delay and unit step graphs before going to detailed design of the 
equalizer. 
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Figure 19.  Group delay is very small, even for low frequencies. 
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Figure 20.  Step response. 

Step response shows no overshoot. This is because Qtc<0,5. 

Let’s chose 100 nF capacitor for C1 by using ”stetson-method” (only advanced designers should use 
it because it is so powerful technique), and by setting the circuit’s zero natural frequency to same 
value as box pole p2 we can calculate value for R2: 
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Ω=
⋅⋅

==  16014,79
10099,382
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12
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p ππ

   (4.10) 

now we can obtain value for R3 with R2 and frequency for desired final pole frequency (fpd): 

Ω=Ω−
⋅⋅

=−=  107514,3579,16014
10088,122

1
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2

1
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R
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R
pd ππ

 (4.11) 

R1 is chosen so, that gain approaches unity in high frequency range (other gains are possible, just 
change it): 

( )( ) ( ) Ω=
Ω+Ω⋅

Ω⋅Ω
=

+∞
= 13938,57

107514,3579,160141
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32

32
1 RRG

RR
R   (4.12) 

The final schematic for equalizer is following: 
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Figure 21.  Schematics for equalizer. 

R1 is a bit small for using this circuit directly between subwoofer power amplifier and filter, so it is 
advisable to precede this stage with inverting buffer stage, which has gain of –1. It also corrects 
inverting behaviour of this circuit. It is also necessary to choose R1-R3 from standard resistor series, 
such as E96. 

Equalizer transfer function magnitude in dB is shown below: 
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Figure 22.  Equalizer transfer function magnitude in dB. 

Equalized system transfer function magnitude compared to unequalized system is shown below: 
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Figure 23.  Equalized system versus unequalized. Unequalized system shown dashed. 
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Figure 24.  Group delay in unequalized and equalized cases. 

From the group delay graph in figure 24 it is shown that group delay increases a bit, but it is still 
very small. Funnily, group delay even becomes smaller in high frequencies. 

Pole-zero diagram below shows how equalizer zero compensates leftmost pole of unequalized 
system: 
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Old pole and equalizer’s zero  New pole introduced by equalizer 

Figure 25.  Pole-zero map for equalized system. 
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Equalizer produces new pole at frequency of 12.88 Hz and it is shown at right side. Qtc and fc for 
equalized system is therefore: 
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95,80
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1

2

1
=
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π
cf     (4.13) 
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95,80
1
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1

95,80
1

47,80
1

=
+

⋅
=tcQ     (4.14) 

The equalized system is therefore a critically damped one. Step response lenghtens a bit, but not 
excessively. 
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Figure 26.  The step response of equalized system. 

Perhaps a more practical transient signal is sine burst signal which is shown below, and response of 
equalized system to it. 
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Figure 27.  Tone burst response of equalized system. 

Tone burst response is also good. No ringing is evident. 

4.2 Equalization of the ”high-Q” design (Qtc>0.5) 

For this example, I chose Infinity Beta 15X driver with 60 litres closed box. I have seen two such 
articles. In this case, Qtc is larger than 0,5 so we must use Linkwitz-transform circuit for 
equalization. 

Infinity Beta 15X has following parameters: 
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